Linting, worked on catalogization
This commit is contained in:
@@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
import numpy # type: ignore
|
import numpy # type: ignore
|
||||||
import cv2 # type: ignore
|
import cv2 # type: ignore
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
@dataclass
|
||||||
|
|||||||
@@ -6,6 +6,7 @@ import itertools
|
|||||||
import numpy as np # type: ignore
|
import numpy as np # type: ignore
|
||||||
import cv2 # type: ignore
|
import cv2 # type: ignore
|
||||||
from .adjustment import Adjustment, get_square
|
from .adjustment import Adjustment, get_square
|
||||||
|
from ..board import Card, NumberCard, SpecialCard
|
||||||
|
|
||||||
|
|
||||||
def _extract_squares(image: np.ndarray,
|
def _extract_squares(image: np.ndarray,
|
||||||
@@ -71,20 +72,20 @@ def get_simplified_squares(image: np.ndarray,
|
|||||||
|
|
||||||
def _find_single_square(search_square: np.ndarray,
|
def _find_single_square(search_square: np.ndarray,
|
||||||
template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]:
|
template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]:
|
||||||
assert search_square.shape[0] <= template_square.shape[0]
|
assert search_square.shape[0] >= template_square.shape[0]
|
||||||
assert search_square.shape[1] <= template_square.shape[1]
|
assert search_square.shape[1] >= template_square.shape[1]
|
||||||
best_result: Optional[Tuple[int, Tuple[int, int]]] = None
|
best_result: Optional[Tuple[int, Tuple[int, int]]] = None
|
||||||
for x, y in itertools.product(
|
for x, y in itertools.product(
|
||||||
range(template_square.shape[0], search_square.shape[0] - 1, -1),
|
range(search_square.shape[0], template_square.shape[0] - 1, -1),
|
||||||
range(template_square.shape[1], search_square.shape[1] - 1, -1)):
|
range(search_square.shape[1], template_square.shape[1] - 1, -1)):
|
||||||
p = template_square[x - search_square.shape[0]:x,
|
p = search_square[x - template_square.shape[0]:x,
|
||||||
y - search_square.shape[1]:y] - search_square
|
y - template_square.shape[1]:y] - template_square
|
||||||
count = cv2.countNonZero(p)
|
count = cv2.countNonZero(p)
|
||||||
if not best_result or count < best_result[0]:
|
if not best_result or count < best_result[0]:
|
||||||
best_result = (
|
best_result = (
|
||||||
count,
|
count,
|
||||||
(x - search_square.shape[0],
|
(x - template_square.shape[0],
|
||||||
y - search_square.shape[1]))
|
y - template_square.shape[1]))
|
||||||
assert best_result
|
assert best_result
|
||||||
return best_result
|
return best_result
|
||||||
|
|
||||||
@@ -96,19 +97,58 @@ def find_square(search_square: np.ndarray,
|
|||||||
best_count = 0
|
best_count = 0
|
||||||
best_coord: Optional[Tuple[int, int]] = None
|
best_coord: Optional[Tuple[int, int]] = None
|
||||||
for square in squares:
|
for square in squares:
|
||||||
count, coord = _find_single_square(square, search_square)
|
count, coord = _find_single_square(search_square, square)
|
||||||
if not best_set or count < best_count:
|
if not best_set or count < best_count:
|
||||||
best_set = True
|
best_set = True
|
||||||
best_square = square
|
best_square = square
|
||||||
best_count = count
|
best_count = count
|
||||||
best_coord = coord
|
best_coord = coord
|
||||||
assert isinstance(best_square, np.ndarray)
|
assert isinstance(best_square, np.ndarray)
|
||||||
assert isinstance(best_coord, tuple)
|
|
||||||
cv2.imshow("Window", best_square -
|
|
||||||
search_square[best_coord[0]:best_coord[0] +
|
|
||||||
best_square.shape[0], best_coord[1]:best_coord[1] +
|
|
||||||
best_square.shape[1]])
|
|
||||||
while cv2.waitKey(0) != 27:
|
|
||||||
pass
|
|
||||||
cv2.destroyWindow("Window")
|
|
||||||
return (best_square, best_count)
|
return (best_square, best_count)
|
||||||
|
|
||||||
|
|
||||||
|
def catalague_cards(squares: List[np.ndarray]) -> List[Tuple[np.ndarray, Card]]:
|
||||||
|
cv2.namedWindow("Catalogue", cv2.WINDOW_NORMAL)
|
||||||
|
cv2.waitKey(1)
|
||||||
|
result: List[Tuple[np.ndarray, Card]] = []
|
||||||
|
print(
|
||||||
|
"Card ID is [B]ai, [Z]hong, [F]a, [H]ua, [R]ed, [G]reen, [B]arkblack")
|
||||||
|
print("Numbercard e.g. R3")
|
||||||
|
special_card_map = {
|
||||||
|
'b': SpecialCard.Bai,
|
||||||
|
'z': SpecialCard.Zhong,
|
||||||
|
'f': SpecialCard.Fa,
|
||||||
|
'h': SpecialCard.Hua}
|
||||||
|
suit_map = {
|
||||||
|
'r': NumberCard.Suit.Red,
|
||||||
|
'g': NumberCard.Suit.Green,
|
||||||
|
'b': NumberCard.Suit.Black}
|
||||||
|
for square in squares:
|
||||||
|
while True:
|
||||||
|
cv2.imshow("Catalogue", cv2.resize(square, (500, 500)))
|
||||||
|
cv2.waitKey(1)
|
||||||
|
card_id = input("Card ID:").lower()
|
||||||
|
card_type: Optional[Card] = None
|
||||||
|
if len(card_id) == 1:
|
||||||
|
if card_id not in special_card_map:
|
||||||
|
print("hi")
|
||||||
|
continue
|
||||||
|
card_type = special_card_map[card_id]
|
||||||
|
elif len(card_id) == 2:
|
||||||
|
if not card_id[0] in suit_map:
|
||||||
|
continue
|
||||||
|
if not card_id[1].isdigit():
|
||||||
|
continue
|
||||||
|
if card_id[1] == '0':
|
||||||
|
continue
|
||||||
|
card_type = NumberCard(number=int(
|
||||||
|
card_id[1]), suit=suit_map[card_id[0]])
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
assert card_type is not None
|
||||||
|
result.append((square, card_type))
|
||||||
|
break
|
||||||
|
|
||||||
|
cv2.destroyWindow("Catalogue")
|
||||||
|
assert result is not None
|
||||||
|
return result
|
||||||
|
|||||||
@@ -1,14 +1,15 @@
|
|||||||
import itertools
|
import itertools
|
||||||
from typing import Tuple, List, Dict
|
from typing import Tuple, List, Dict
|
||||||
import numpy # type: ignore
|
import numpy as np # type: ignore
|
||||||
import cv2 # type: ignore
|
import cv2 # type: ignore
|
||||||
|
import zipfile
|
||||||
|
|
||||||
from .context import shenzhen_solitaire
|
from .context import shenzhen_solitaire
|
||||||
from shenzhen_solitaire.cv import adjustment
|
from shenzhen_solitaire.cv import adjustment
|
||||||
from shenzhen_solitaire.cv import card_finder
|
from shenzhen_solitaire.cv import card_finder
|
||||||
|
|
||||||
|
|
||||||
def pixelcount(image: numpy.ndarray) -> List[Tuple[Tuple[int, int, int], int]]:
|
def pixelcount(image: np.ndarray) -> List[Tuple[Tuple[int, int, int], int]]:
|
||||||
p: Dict[Tuple[int, int, int], int] = {(0, 0, 0): 0}
|
p: Dict[Tuple[int, int, int], int] = {(0, 0, 0): 0}
|
||||||
for pixel in itertools.chain.from_iterable(image):
|
for pixel in itertools.chain.from_iterable(image):
|
||||||
x = tuple(pixel)
|
x = tuple(pixel)
|
||||||
@@ -20,22 +21,40 @@ def pixelcount(image: numpy.ndarray) -> List[Tuple[Tuple[int, int, int], int]]:
|
|||||||
return B
|
return B
|
||||||
|
|
||||||
|
|
||||||
def simplify(image: numpy.ndarray) -> None:
|
def simplify(image: np.ndarray) -> None:
|
||||||
cv2.imshow("Window", image)
|
cv2.imshow("Window", image)
|
||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
cv2.destroyWindow("Window")
|
cv2.destroyWindow("Window")
|
||||||
print(*card_finder.simplify(image).items(), sep='\n')
|
print(*card_finder.simplify(image)[1].items(), sep='\n')
|
||||||
cv2.imshow("Window", image)
|
cv2.imshow("Window", image)
|
||||||
cv2.waitKey(0)
|
cv2.waitKey(0)
|
||||||
cv2.destroyWindow("Window")
|
cv2.destroyWindow("Window")
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
def main() -> None:
|
||||||
image = cv2.imread("Solitaire.png")
|
#image = cv2.imread("Solitaire.png")
|
||||||
image2 = cv2.imread("Solitaire2.png")
|
with open("Solitaire.png", 'rb') as fd:
|
||||||
image2 = cv2.resize(image2, (1000, 629))
|
img_str = fd.read()
|
||||||
|
nparr = np.frombuffer(img_str, np.uint8)
|
||||||
|
image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||||
|
#image2 = cv2.imread("Solitaire2.png")
|
||||||
|
#image2 = cv2.resize(image2, (1000, 629))
|
||||||
|
image2 = cv2.imread("Solitaire.png")
|
||||||
|
|
||||||
adj = adjustment.adjust_field(image)
|
adj = adjustment.adjust_field(image)
|
||||||
|
squares = card_finder.get_field_squares(image, adj)
|
||||||
|
print(squares[0])
|
||||||
|
np.save('0.dat', squares[0], allow_pickle=False)
|
||||||
|
assert 0
|
||||||
|
with open("0.dat", 'wb') as fd:
|
||||||
|
fd.write(squares[0].tobytes())
|
||||||
|
catalogue = card_finder.catalague_cards(squares[:5])
|
||||||
|
my_zip = zipfile.ZipFile('myzip.zip', mode='w')
|
||||||
|
for index, x in enumerate(catalogue):
|
||||||
|
my_zip.writestr(f"{index}.dat", x[0].tobytes())
|
||||||
|
my_zip.close()
|
||||||
|
assert 0
|
||||||
|
|
||||||
squares = card_finder.get_simplified_squares(image, adj)
|
squares = card_finder.get_simplified_squares(image, adj)
|
||||||
print("Simplified")
|
print("Simplified")
|
||||||
|
|
||||||
@@ -50,7 +69,13 @@ def main() -> None:
|
|||||||
print("Finding...")
|
print("Finding...")
|
||||||
found_image, certainty = card_finder.find_square(
|
found_image, certainty = card_finder.find_square(
|
||||||
image_squares[i], squares)
|
image_squares[i], squares)
|
||||||
|
print(certainty)
|
||||||
|
|
||||||
|
|
||||||
|
def main2() -> None:
|
||||||
|
A = np.load('0.dat.npy')
|
||||||
|
print(A)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main2()
|
||||||
|
|||||||
@@ -1,15 +0,0 @@
|
|||||||
from .context import shenzhen_solitaire
|
|
||||||
from shenzhen_solitaire import solver
|
|
||||||
|
|
||||||
from .boards import my_board
|
|
||||||
|
|
||||||
|
|
||||||
def main() -> None:
|
|
||||||
A = solver.solve(my_board)
|
|
||||||
for _, B in zip(range(1), A):
|
|
||||||
print(*B, sep='\n')
|
|
||||||
print(f"Solution: {len(B)}")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
Reference in New Issue
Block a user