Linting
This commit is contained in:
@@ -1,11 +1,14 @@
|
||||
"""Contains functions to find significant pieces of a solitaire screenshot"""
|
||||
|
||||
from typing import Optional, Tuple
|
||||
from dataclasses import dataclass
|
||||
import cv2
|
||||
import numpy
|
||||
import numpy # type: ignore
|
||||
import cv2 # type: ignore
|
||||
|
||||
|
||||
@dataclass
|
||||
class Adjustment:
|
||||
"""Configuration for a grid"""
|
||||
x: int
|
||||
y: int
|
||||
w: int
|
||||
@@ -14,12 +17,13 @@ class Adjustment:
|
||||
dy: int
|
||||
|
||||
|
||||
def get_square(adjustment: Adjustment, ix: int = 0,
|
||||
iy: int = 0) -> Tuple[int, int, int, int]:
|
||||
return (adjustment.x + adjustment.dx * ix,
|
||||
adjustment.y + adjustment.dy * iy,
|
||||
adjustment.x + adjustment.w + adjustment.dx * ix,
|
||||
adjustment.y + adjustment.h + adjustment.dy * iy)
|
||||
def get_square(adjustment: Adjustment, index_x: int = 0,
|
||||
index_y: int = 0) -> Tuple[int, int, int, int]:
|
||||
"""Get one square from index and adjustment"""
|
||||
return (adjustment.x + adjustment.dx * index_x,
|
||||
adjustment.y + adjustment.dy * index_y,
|
||||
adjustment.x + adjustment.w + adjustment.dx * index_x,
|
||||
adjustment.y + adjustment.h + adjustment.dy * index_y)
|
||||
|
||||
|
||||
def _adjust_squares(
|
||||
@@ -30,15 +34,15 @@ def _adjust_squares(
|
||||
if not adjustment:
|
||||
adjustment = Adjustment(0, 0, 0, 0, 0, 0)
|
||||
while True:
|
||||
B = image.copy()
|
||||
for ix in range(count_x):
|
||||
for iy in range(count_y):
|
||||
square = get_square(adjustment, ix, iy)
|
||||
cv2.rectangle(B,
|
||||
working_image = image.copy()
|
||||
for index_x in range(count_x):
|
||||
for index_y in range(count_y):
|
||||
square = get_square(adjustment, index_x, index_y)
|
||||
cv2.rectangle(working_image,
|
||||
(square[0], square[1]),
|
||||
(square[2], square[3]),
|
||||
(0, 0, 0))
|
||||
cv2.imshow('Window', B)
|
||||
cv2.imshow('Window', working_image)
|
||||
k = cv2.waitKey(0)
|
||||
print(k)
|
||||
if k == 27:
|
||||
@@ -80,17 +84,21 @@ def _adjust_squares(
|
||||
return adjustment
|
||||
|
||||
|
||||
def adjust_field(image) -> Adjustment:
|
||||
def adjust_field(image: numpy.ndarray) -> Adjustment:
|
||||
"""Open configuration grid for the field"""
|
||||
return _adjust_squares(image, 8, 5, Adjustment(42, 226, 15, 15, 119, 24))
|
||||
|
||||
|
||||
def adjust_bunker(image) -> Adjustment:
|
||||
def adjust_bunker(image: numpy.ndarray) -> Adjustment:
|
||||
"""Open configuration grid for the bunker"""
|
||||
return _adjust_squares(image, 3, 1)
|
||||
|
||||
|
||||
def adjust_hua(image) -> Adjustment:
|
||||
def adjust_hua(image: numpy.ndarray) -> Adjustment:
|
||||
"""Open configuration grid for the flower card"""
|
||||
return _adjust_squares(image, 1, 1)
|
||||
|
||||
|
||||
def adjust_goal(image) -> Adjustment:
|
||||
def adjust_goal(image: numpy.ndarray) -> Adjustment:
|
||||
"""Open configuration grid for the goal"""
|
||||
return _adjust_squares(image, 3, 1)
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
"""Functions to detect card value"""
|
||||
|
||||
from typing import List, Tuple, Optional, Dict
|
||||
import enum
|
||||
import itertools
|
||||
import cv2
|
||||
import numpy as np
|
||||
import numpy as np # type: ignore
|
||||
import cv2 # type: ignore
|
||||
from .adjustment import Adjustment, get_square
|
||||
|
||||
|
||||
@@ -18,13 +20,13 @@ def _extract_squares(image: np.ndarray,
|
||||
def get_field_squares(image: np.ndarray,
|
||||
adjustment: Adjustment) -> List[np.ndarray]:
|
||||
squares = []
|
||||
for ix in range(8):
|
||||
for iy in range(5):
|
||||
squares.append(get_square(adjustment, ix, iy))
|
||||
for index_x, index_y in itertools.product(range(8), range(5)):
|
||||
squares.append(get_square(adjustment, index_x, index_y))
|
||||
return _extract_squares(image, squares)
|
||||
|
||||
|
||||
class Cardcolor(enum.Enum):
|
||||
"""Relevant colors for different types of cards"""
|
||||
Bai = (65, 65, 65)
|
||||
Black = (0, 0, 0)
|
||||
Red = (22, 48, 178)
|
||||
@@ -83,15 +85,16 @@ def _find_single_square(search_square: np.ndarray,
|
||||
count,
|
||||
(x - search_square.shape[0],
|
||||
y - search_square.shape[1]))
|
||||
assert best_result
|
||||
return best_result
|
||||
|
||||
|
||||
def find_square(search_square: np.ndarray,
|
||||
squares: List[np.ndarray]) -> Tuple[np.ndarray, int]:
|
||||
best_set = False
|
||||
best_square = None
|
||||
best_square: Optional[np.ndarray] = None
|
||||
best_count = 0
|
||||
best_coord = None
|
||||
best_coord: Optional[Tuple[int, int]] = None
|
||||
for square in squares:
|
||||
count, coord = _find_single_square(square, search_square)
|
||||
if not best_set or count < best_count:
|
||||
@@ -99,11 +102,12 @@ def find_square(search_square: np.ndarray,
|
||||
best_square = square
|
||||
best_count = count
|
||||
best_coord = coord
|
||||
print(best_square[1])
|
||||
assert best_square
|
||||
assert best_coord
|
||||
cv2.imshow("Window", best_square -
|
||||
search_square[best_coord[0]:best_coord[0] +
|
||||
best_square.shape[0], best_coord[1]:best_coord[1] +
|
||||
best_square.shape[1]])
|
||||
best_square.shape[0], best_coord[1]:best_coord[1] +
|
||||
best_square.shape[1]])
|
||||
while cv2.waitKey(0) != 27:
|
||||
pass
|
||||
cv2.destroyWindow("Window")
|
||||
|
||||
Reference in New Issue
Block a user