This commit is contained in:
Lukas Wölfer
2019-04-22 22:17:19 +02:00
parent 9be11b9aac
commit 5cca608962
2 changed files with 40 additions and 28 deletions

View File

@@ -1,11 +1,14 @@
"""Contains functions to find significant pieces of a solitaire screenshot"""
from typing import Optional, Tuple
from dataclasses import dataclass
import cv2
import numpy
import numpy # type: ignore
import cv2 # type: ignore
@dataclass
class Adjustment:
"""Configuration for a grid"""
x: int
y: int
w: int
@@ -14,12 +17,13 @@ class Adjustment:
dy: int
def get_square(adjustment: Adjustment, ix: int = 0,
iy: int = 0) -> Tuple[int, int, int, int]:
return (adjustment.x + adjustment.dx * ix,
adjustment.y + adjustment.dy * iy,
adjustment.x + adjustment.w + adjustment.dx * ix,
adjustment.y + adjustment.h + adjustment.dy * iy)
def get_square(adjustment: Adjustment, index_x: int = 0,
index_y: int = 0) -> Tuple[int, int, int, int]:
"""Get one square from index and adjustment"""
return (adjustment.x + adjustment.dx * index_x,
adjustment.y + adjustment.dy * index_y,
adjustment.x + adjustment.w + adjustment.dx * index_x,
adjustment.y + adjustment.h + adjustment.dy * index_y)
def _adjust_squares(
@@ -30,15 +34,15 @@ def _adjust_squares(
if not adjustment:
adjustment = Adjustment(0, 0, 0, 0, 0, 0)
while True:
B = image.copy()
for ix in range(count_x):
for iy in range(count_y):
square = get_square(adjustment, ix, iy)
cv2.rectangle(B,
working_image = image.copy()
for index_x in range(count_x):
for index_y in range(count_y):
square = get_square(adjustment, index_x, index_y)
cv2.rectangle(working_image,
(square[0], square[1]),
(square[2], square[3]),
(0, 0, 0))
cv2.imshow('Window', B)
cv2.imshow('Window', working_image)
k = cv2.waitKey(0)
print(k)
if k == 27:
@@ -80,17 +84,21 @@ def _adjust_squares(
return adjustment
def adjust_field(image) -> Adjustment:
def adjust_field(image: numpy.ndarray) -> Adjustment:
"""Open configuration grid for the field"""
return _adjust_squares(image, 8, 5, Adjustment(42, 226, 15, 15, 119, 24))
def adjust_bunker(image) -> Adjustment:
def adjust_bunker(image: numpy.ndarray) -> Adjustment:
"""Open configuration grid for the bunker"""
return _adjust_squares(image, 3, 1)
def adjust_hua(image) -> Adjustment:
def adjust_hua(image: numpy.ndarray) -> Adjustment:
"""Open configuration grid for the flower card"""
return _adjust_squares(image, 1, 1)
def adjust_goal(image) -> Adjustment:
def adjust_goal(image: numpy.ndarray) -> Adjustment:
"""Open configuration grid for the goal"""
return _adjust_squares(image, 3, 1)

View File

@@ -1,8 +1,10 @@
"""Functions to detect card value"""
from typing import List, Tuple, Optional, Dict
import enum
import itertools
import cv2
import numpy as np
import numpy as np # type: ignore
import cv2 # type: ignore
from .adjustment import Adjustment, get_square
@@ -18,13 +20,13 @@ def _extract_squares(image: np.ndarray,
def get_field_squares(image: np.ndarray,
adjustment: Adjustment) -> List[np.ndarray]:
squares = []
for ix in range(8):
for iy in range(5):
squares.append(get_square(adjustment, ix, iy))
for index_x, index_y in itertools.product(range(8), range(5)):
squares.append(get_square(adjustment, index_x, index_y))
return _extract_squares(image, squares)
class Cardcolor(enum.Enum):
"""Relevant colors for different types of cards"""
Bai = (65, 65, 65)
Black = (0, 0, 0)
Red = (22, 48, 178)
@@ -83,15 +85,16 @@ def _find_single_square(search_square: np.ndarray,
count,
(x - search_square.shape[0],
y - search_square.shape[1]))
assert best_result
return best_result
def find_square(search_square: np.ndarray,
squares: List[np.ndarray]) -> Tuple[np.ndarray, int]:
best_set = False
best_square = None
best_square: Optional[np.ndarray] = None
best_count = 0
best_coord = None
best_coord: Optional[Tuple[int, int]] = None
for square in squares:
count, coord = _find_single_square(square, search_square)
if not best_set or count < best_count:
@@ -99,7 +102,8 @@ def find_square(search_square: np.ndarray,
best_square = square
best_count = count
best_coord = coord
print(best_square[1])
assert best_square
assert best_coord
cv2.imshow("Window", best_square -
search_square[best_coord[0]:best_coord[0] +
best_square.shape[0], best_coord[1]:best_coord[1] +