Restructured code
This commit is contained in:
153
shenzhen_solitaire/card_detection/card_finder.py
Normal file
153
shenzhen_solitaire/card_detection/card_finder.py
Normal file
@@ -0,0 +1,153 @@
|
||||
"""Functions to detect card value"""
|
||||
|
||||
from typing import List, Tuple, Optional, Dict
|
||||
import enum
|
||||
import itertools
|
||||
import numpy as np # type: ignore
|
||||
import cv2 # type: ignore
|
||||
from .adjustment import Adjustment, get_square
|
||||
from ..board import Card, NumberCard, SpecialCard
|
||||
|
||||
|
||||
def _extract_squares(image: np.ndarray,
|
||||
squares: List[Tuple[int,
|
||||
int,
|
||||
int,
|
||||
int]]) -> List[np.ndarray]:
|
||||
return [image[square[1]:square[3], square[0]:square[2]].copy()
|
||||
for square in squares]
|
||||
|
||||
|
||||
def get_field_squares(image: np.ndarray,
|
||||
adjustment: Adjustment,
|
||||
count_x: int,
|
||||
count_y: int) -> List[np.ndarray]:
|
||||
"""Return all squares in the field, according to the adjustment"""
|
||||
squares = []
|
||||
for index_x, index_y in itertools.product(range(count_y), range(count_x)):
|
||||
squares.append(get_square(adjustment, index_x, index_y))
|
||||
return _extract_squares(image, squares)
|
||||
|
||||
|
||||
class Cardcolor(enum.Enum):
|
||||
"""Relevant colors for different types of cards"""
|
||||
Bai = (65, 65, 65)
|
||||
Black = (0, 0, 0)
|
||||
Red = (22, 48, 178)
|
||||
Green = (76, 111, 19)
|
||||
Background = (178, 194, 193)
|
||||
|
||||
|
||||
GREYSCALE_COLOR = {
|
||||
Cardcolor.Bai: 50,
|
||||
Cardcolor.Black: 100,
|
||||
Cardcolor.Red: 150,
|
||||
Cardcolor.Green: 200,
|
||||
Cardcolor.Background: 250}
|
||||
|
||||
|
||||
def simplify(image: np.ndarray) -> Tuple[np.ndarray, Dict[Cardcolor, int]]:
|
||||
"""Reduce given image to the colors in Cardcolor"""
|
||||
result_image: np.ndarray = np.zeros(
|
||||
(image.shape[0], image.shape[1]), np.uint8)
|
||||
result_dict: Dict[Cardcolor, int] = {c: 0 for c in Cardcolor}
|
||||
for pixel_x, pixel_y in itertools.product(
|
||||
range(result_image.shape[0]),
|
||||
range(result_image.shape[1])):
|
||||
pixel = image[pixel_x, pixel_y]
|
||||
best_color: Optional[Tuple[Cardcolor, int]] = None
|
||||
for color in Cardcolor:
|
||||
mse = sum((x - y) ** 2 for x, y in zip(color.value, pixel))
|
||||
if not best_color or best_color[1] > mse: #pylint: disable=E1136
|
||||
best_color = (color, mse)
|
||||
assert best_color
|
||||
result_image[pixel_x, pixel_y] = GREYSCALE_COLOR[best_color[0]]
|
||||
result_dict[best_color[0]] += 1
|
||||
return (result_image, result_dict)
|
||||
|
||||
|
||||
def _find_single_square(search_square: np.ndarray,
|
||||
template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]:
|
||||
assert search_square.shape[0] >= template_square.shape[0]
|
||||
assert search_square.shape[1] >= template_square.shape[1]
|
||||
best_result: Optional[Tuple[int, Tuple[int, int]]] = None
|
||||
for margin_x, margin_y in itertools.product(
|
||||
range(search_square.shape[0], template_square.shape[0] - 1, -1),
|
||||
range(search_square.shape[1], template_square.shape[1] - 1, -1)):
|
||||
search_region = search_square[margin_x -
|
||||
template_square.shape[0]:margin_x, margin_y -
|
||||
template_square.shape[1]:margin_y]
|
||||
count = cv2.countNonZero(search_region - template_square)
|
||||
if not best_result or count < best_result[0]: #pylint: disable=E1136
|
||||
best_result = (
|
||||
count,
|
||||
(margin_x - template_square.shape[0],
|
||||
margin_y - template_square.shape[1]))
|
||||
assert best_result
|
||||
return best_result
|
||||
|
||||
|
||||
def find_square(search_square: np.ndarray,
|
||||
squares: List[np.ndarray]) -> Tuple[np.ndarray, int]:
|
||||
"""Compare all squares in squares with search_square, return best matching one.
|
||||
Requires all squares to be simplified."""
|
||||
best_set = False
|
||||
best_square: Optional[np.ndarray] = None
|
||||
best_count = 0
|
||||
for square in squares:
|
||||
count, _ = _find_single_square(search_square, square)
|
||||
if not best_set or count < best_count:
|
||||
best_set = True
|
||||
best_square = square
|
||||
best_count = count
|
||||
assert isinstance(best_square, np.ndarray)
|
||||
return (best_square, best_count)
|
||||
|
||||
|
||||
def catalogue_cards(squares: List[np.ndarray]
|
||||
) -> List[Tuple[np.ndarray, Card]]:
|
||||
"""Run manual cataloging for given squares"""
|
||||
cv2.namedWindow("Catalogue", cv2.WINDOW_NORMAL)
|
||||
cv2.waitKey(1)
|
||||
result: List[Tuple[np.ndarray, Card]] = []
|
||||
print(
|
||||
"Card ID is [B]ai, [Z]hong, [F]a, [H]ua, [R]ed, [G]reen, [B]lack")
|
||||
print("Numbercard e.g. R3")
|
||||
special_card_map = {
|
||||
'b': SpecialCard.Bai,
|
||||
'z': SpecialCard.Zhong,
|
||||
'f': SpecialCard.Fa,
|
||||
'h': SpecialCard.Hua}
|
||||
suit_map = {
|
||||
'r': NumberCard.Suit.Red,
|
||||
'g': NumberCard.Suit.Green,
|
||||
'b': NumberCard.Suit.Black}
|
||||
for square in squares:
|
||||
while True:
|
||||
cv2.imshow("Catalogue", cv2.resize(square, (500, 500)))
|
||||
cv2.waitKey(1)
|
||||
card_id = input("Card ID:").lower()
|
||||
card_type: Optional[Card] = None
|
||||
if len(card_id) == 1:
|
||||
if card_id not in special_card_map:
|
||||
continue
|
||||
card_type = special_card_map[card_id]
|
||||
elif len(card_id) == 2:
|
||||
if not card_id[0] in suit_map:
|
||||
continue
|
||||
if not card_id[1].isdigit():
|
||||
continue
|
||||
if card_id[1] == '0':
|
||||
continue
|
||||
card_type = NumberCard(number=int(
|
||||
card_id[1]), suit=suit_map[card_id[0]])
|
||||
else:
|
||||
continue
|
||||
assert card_type is not None
|
||||
print(card_type)
|
||||
result.append((square, card_type))
|
||||
break
|
||||
|
||||
cv2.destroyWindow("Catalogue")
|
||||
assert result is not None
|
||||
return result
|
||||
Reference in New Issue
Block a user