Worked on feature extraction

This commit is contained in:
Lukas Wölfer
2020-06-18 05:10:31 +02:00
parent 11919bb13c
commit 7efa290295
2 changed files with 53 additions and 32 deletions

View File

@@ -4,10 +4,10 @@ from shenzhen_solitaire.board import NumberCard, SpecialCard
import cv2
import numpy as np
from typing import Any, Tuple
from typing import Any, Tuple, List, Union, Dict, Optional
def border_image(image, size=1, color=0):
def border_image(image: np.array, size: int = 1, color: int = 0) -> None:
for ring in range(size):
for x in range(ring, image.shape[0] - ring):
image[x][ring] = color
@@ -17,47 +17,39 @@ def border_image(image, size=1, color=0):
image[image.shape[0] - 1 - ring][y] = color
def prepare_image(image):
def prepare_image(image: np.array) -> np.array:
cnt = get_contour(image)
mask = np.zeros(image.shape[:2], dtype=image.dtype)
contim = cv2.drawContours(mask, [cnt], 0, 255, cv2.FILLED)
# crop = np.multiply(edge_image, contim)
return contim
def get_contour(image):
def get_contour(image: np.array) -> np.array:
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, edge_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY_INV)
border_image(edge_image, size=0)
kernel = cv2.getStructuringElement(cv2.MORPH_CROSS, (3, 3))
edge_image = cv2.morphologyEx(edge_image, cv2.MORPH_CLOSE, kernel)
border_image(edge_image, size=1)
contours, hierarchy = cv2.findContours(
edge_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
cnt = max(contours, key=cv2.contourArea)
assert isinstance(cnt, np.ndarray)
return cnt
def matchScaleInvShape(cont1, cont2):
def matchScaleInvShape(cont1: np.array, cont2: np.array) -> float:
m1 = cv2.moments(cont1)
m2 = cv2.moments(cont2)
moments = [
(m1[moment], m2[moment]) for moment in m1 if str(moment).startswith("nu")
]
return sum([abs((nu1) - (nu2)) for nu1, nu2 in moments])
return sum([abs((nu1) - (nu2)) * 1000 for nu1, nu2 in moments])
def match_template(image, template):
image_cont, hierarchy = cv2.findContours(
image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
imcont = max(image_cont, key=cv2.contourArea)
template_cont, hierarchy = cv2.findContours(
template, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
temcont = max(template_cont, key=cv2.contourArea)
return [matchScaleInvShape(imcont, temcont)]
def type_fine(one, other) -> bool:
def type_fine(
one: Union[SpecialCard, NumberCard], other: Union[SpecialCard, NumberCard]
) -> bool:
if isinstance(one, SpecialCard):
return one == other
assert isinstance(one, NumberCard)
@@ -65,7 +57,10 @@ def type_fine(one, other) -> bool:
return False
return one.number == other.number
def check_type(matches, should_type):
def check_type(
matches: List[Any], should_type: Union[SpecialCard, NumberCard]
) -> Optional[int]:
if not type_fine(matches[0][0], should_type):
correct_index = 0
for list_type, list_value, _ in matches:
@@ -77,24 +72,43 @@ def check_type(matches, should_type):
f"{str(should_type):>20} matched as {str(matches[0][0]):>20} {matches[0][1]:.05f}, "
f"correct in pos {correct_index:02d} val {correct_value:.05f}"
)
cv2.imshow("one", prepare_image(catalogue[matches[0][2]][0]))
cv2.imshow("two", img1)
cv2.imshow("three", prepare_image(catalogue[matches[correct_index][2]][0]))
cv2.waitKey(0)
return True
return False
catalogue_index = matches[correct_index][2]
assert isinstance(catalogue_index, int)
return catalogue_index
return None
def debug_match(image, image_type, catalogue):
def show_wrong_images(
current: np.ndarray, correct: np.ndarray, wrong: np.ndarray
) -> None:
cv2.imshow("Current", current)
cv2.imshow("Correct", correct)
cv2.imshow("Wrong", wrong)
cv2.waitKey(0)
def debug_match(
image: np.array,
image_type: Union[NumberCard, SpecialCard],
catalogue: List[Tuple[Any, Union[SpecialCard, NumberCard]]],
) -> None:
cnt1 = prepare_image(image)
i1_matches = []
for index, (template_image, template_type) in enumerate(catalogue):
cnt2 = prepare_image(template_image)
i1_matches.append((template_type, matchScaleInvShape(cnt1, cnt2), index))
i1_matches = sorted(i1_matches, key=lambda x: x[1])
correct_type_index = check_type(i1_matches, image_type)
if correct_type_index is not None:
show_wrong_images(
cnt1,
prepare_image(catalogue[correct_type_index][0]),
prepare_image(catalogue[i1_matches[0][2]][0]),
)
return
for list_type, list_value, list_index in i1_matches:
if not type_fine(list_type, i1_matches[0][0]):
if list_value * 0.4 < i1_matches[0][1]:
if list_value * 0.8 < i1_matches[0][1]:
print(
f"{str(image_type):>20} {i1_matches[0][1]:.05f} very close"
f" match with {str(list_type):>20} {list_value:.05f}"