Made image detection work
This commit is contained in:
@@ -4,34 +4,49 @@ import numpy as np
|
||||
from .configuration import Configuration
|
||||
from ..board import Board
|
||||
from . import card_finder
|
||||
import cv2
|
||||
from typing import Iterable, Any, List
|
||||
import itertools
|
||||
|
||||
|
||||
def parse_board(image: np.ndarray, conf: Configuration) -> Board:
|
||||
"""Parse a screenshot of the game, using a given configuration"""
|
||||
fake_adjustments = conf.field_adjustment
|
||||
fake_adjustments.x -= 5
|
||||
fake_adjustments.y -= 5
|
||||
fake_adjustments.h += 10
|
||||
fake_adjustments.w += 10
|
||||
row_count = 13
|
||||
column_count = 8
|
||||
|
||||
def grouper(iterable: Iterable[Any], groupsize: int, fillvalue: Any = None) -> Iterable[Any]:
|
||||
"Collect data into fixed-length chunks or blocks"
|
||||
args = [iter(iterable)] * groupsize
|
||||
return itertools.zip_longest(*args, fillvalue=fillvalue)
|
||||
|
||||
squares = card_finder.get_field_squares(
|
||||
image, conf.field_adjustment, count_x=13, count_y=8)
|
||||
squares = [card_finder.simplify(square)[0] for square in squares]
|
||||
square_rows = [squares[13 * i:13 * (i + 1)] for i in range(8)]
|
||||
empty_square = np.full(
|
||||
shape=(conf.field_adjustment.w,
|
||||
conf.field_adjustment.h),
|
||||
fill_value=card_finder.GREYSCALE_COLOR[card_finder.Cardcolor.Background],
|
||||
dtype=np.uint8)
|
||||
assert empty_square.shape == squares[0].shape
|
||||
result: Board = Board()
|
||||
for row_id, square_row in enumerate(square_rows):
|
||||
for square in square_row:
|
||||
fitting_square, _ = card_finder.find_square(
|
||||
square, [empty_square] + [x[0] for x in conf.catalogue])
|
||||
if np.array_equal(fitting_square, empty_square):
|
||||
print("empty")
|
||||
break
|
||||
for cat_square, cardtype in conf.catalogue:
|
||||
if np.array_equal(fitting_square, cat_square):
|
||||
print(cardtype)
|
||||
result.field[row_id].append(cardtype)
|
||||
break
|
||||
else:
|
||||
print("did not find image")
|
||||
image, conf.field_adjustment, count_x=row_count, count_y=column_count
|
||||
)
|
||||
grouped_squares = grouper(squares, row_count)
|
||||
result = Board()
|
||||
for group_index, square_group in enumerate(grouped_squares):
|
||||
group_field = []
|
||||
for index, square in enumerate(square_group):
|
||||
best_val = None
|
||||
best_name = None
|
||||
for template, name in conf.catalogue:
|
||||
res = cv2.matchTemplate(square, template, cv2.TM_CCOEFF_NORMED)
|
||||
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
|
||||
if best_val is None or max_val > best_val:
|
||||
best_val = max_val
|
||||
best_name = name
|
||||
assert best_name is not None
|
||||
group_field.append(best_name)
|
||||
|
||||
# print(f"\t{best_val}: {best_name}")
|
||||
# cv2.imshow("Catalogue", cv2.resize(square, (500, 500)))
|
||||
# cv2.waitKey()
|
||||
|
||||
result.field[group_index] = group_field
|
||||
|
||||
return result
|
||||
|
||||
Reference in New Issue
Block a user