"""Functions to detect card value""" from typing import List, Tuple, Optional, Dict import enum import itertools import numpy as np # type: ignore import cv2 # type: ignore from .adjustment import Adjustment, get_square def _extract_squares(image: np.ndarray, squares: List[Tuple[int, int, int, int]]) -> List[np.ndarray]: return [image[square[1]:square[3], square[0]:square[2]].copy() for square in squares] def get_field_squares(image: np.ndarray, adjustment: Adjustment) -> List[np.ndarray]: squares = [] for index_x, index_y in itertools.product(range(8), range(5)): squares.append(get_square(adjustment, index_x, index_y)) return _extract_squares(image, squares) class Cardcolor(enum.Enum): """Relevant colors for different types of cards""" Bai = (65, 65, 65) Black = (0, 0, 0) Red = (22, 48, 178) Green = (76, 111, 19) Background = (178, 194, 193) GREYSCALE_COLOR = { Cardcolor.Bai: 50, Cardcolor.Black: 100, Cardcolor.Red: 150, Cardcolor.Green: 200, Cardcolor.Background: 250} def simplify(image: np.ndarray) -> Tuple[np.ndarray, Dict[Cardcolor, int]]: result_image: np.ndarray = np.zeros( (image.shape[0], image.shape[1]), np.uint8) result_dict: Dict[Cardcolor, int] = {c: 0 for c in Cardcolor} for pixel_x, pixel_y in itertools.product( range(result_image.shape[0]), range(result_image.shape[1])): pixel = image[pixel_x, pixel_y] best_color: Optional[Tuple[Cardcolor, int]] = None for color in Cardcolor: mse = sum((x - y) ** 2 for x, y in zip(color.value, pixel)) if not best_color or best_color[1] > mse: best_color = (color, mse) assert best_color result_image[pixel_x, pixel_y] = GREYSCALE_COLOR[best_color[0]] result_dict[best_color[0]] += 1 return (result_image, result_dict) def get_simplified_squares(image: np.ndarray, adjustment: Adjustment) -> List[np.ndarray]: squares = get_field_squares(image, adjustment) for index, square in enumerate(squares): squares[index], _ = simplify(square) return squares def _find_single_square(search_square: np.ndarray, template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]: assert search_square.shape[0] <= template_square.shape[0] assert search_square.shape[1] <= template_square.shape[1] best_result: Optional[Tuple[int, Tuple[int, int]]] = None for x, y in itertools.product( range(template_square.shape[0], search_square.shape[0] - 1, -1), range(template_square.shape[1], search_square.shape[1] - 1, -1)): p = template_square[x - search_square.shape[0]:x, y - search_square.shape[1]:y] - search_square count = cv2.countNonZero(p) if not best_result or count < best_result[0]: best_result = ( count, (x - search_square.shape[0], y - search_square.shape[1])) assert best_result return best_result def find_square(search_square: np.ndarray, squares: List[np.ndarray]) -> Tuple[np.ndarray, int]: best_set = False best_square: Optional[np.ndarray] = None best_count = 0 best_coord: Optional[Tuple[int, int]] = None for square in squares: count, coord = _find_single_square(square, search_square) if not best_set or count < best_count: best_set = True best_square = square best_count = count best_coord = coord assert isinstance(best_square, np.ndarray) assert isinstance(best_coord, tuple) cv2.imshow("Window", best_square - search_square[best_coord[0]:best_coord[0] + best_square.shape[0], best_coord[1]:best_coord[1] + best_square.shape[1]]) while cv2.waitKey(0) != 27: pass cv2.destroyWindow("Window") return (best_square, best_count)