"""Functions to detect card value""" from typing import List, Tuple, Optional, Dict import enum import itertools import numpy as np import cv2 from .adjustment import Adjustment, get_square from ..board import Card, NumberCard, SpecialCard def _extract_squares( image: np.ndarray, squares: List[Tuple[int, int, int, int]] ) -> List[np.ndarray]: return [ image[square[1] : square[3], square[0] : square[2]].copy() for square in squares ] def get_field_squares( image: np.ndarray, adjustment: Adjustment, count_x: int, count_y: int ) -> List[np.ndarray]: """Return all squares in the field, according to the adjustment""" squares = [] for index_x, index_y in itertools.product(range(count_y), range(count_x)): squares.append(get_square(adjustment, index_x, index_y)) return _extract_squares(image, squares) class Cardcolor(enum.Enum): """Relevant colors for different types of cards""" Bai = (65, 65, 65) Black = (0, 0, 0) Red = (22, 48, 178) Green = (76, 111, 19) Background = (178, 194, 193) def _find_single_square( search_square: np.ndarray, template_square: np.ndarray ) -> Tuple[int, Tuple[int, int]]: assert search_square.shape[0] >= template_square.shape[0] assert search_square.shape[1] >= template_square.shape[1] best_result: Optional[Tuple[int, Tuple[int, int]]] = None for margin_x, margin_y in itertools.product( range(search_square.shape[0], template_square.shape[0] - 1, -1), range(search_square.shape[1], template_square.shape[1] - 1, -1), ): search_region = search_square[ margin_x - template_square.shape[0] : margin_x, margin_y - template_square.shape[1] : margin_y, ] count = cv2.countNonZero(search_region - template_square) if not best_result or count < best_result[0]: # pylint: disable=E1136 best_result = ( count, ( margin_x - template_square.shape[0], margin_y - template_square.shape[1], ), ) assert best_result return best_result def find_square( search_square: np.ndarray, squares: List[np.ndarray] ) -> Tuple[np.ndarray, int]: """Compare all squares in squares with search_square, return best matching one. Requires all squares to be simplified.""" best_set = False best_square: Optional[np.ndarray] = None best_count = 0 for square in squares: count, _ = _find_single_square(search_square, square) if not best_set or count < best_count: best_set = True best_square = square best_count = count assert isinstance(best_square, np.ndarray) return (best_square, best_count) def catalogue_cards(squares: List[np.ndarray]) -> List[Tuple[np.ndarray, Card]]: """Run manual cataloging for given squares""" cv2.namedWindow("Catalogue", cv2.WINDOW_NORMAL) cv2.waitKey(1) result: List[Tuple[np.ndarray, Card]] = [] print("Card ID is [B]ai, [Z]hong, [F]a, [H]ua, [R]ed, [G]reen, [B]lack") print("Numbercard e.g. R3") special_card_map = { "b": SpecialCard.Bai, "z": SpecialCard.Zhong, "f": SpecialCard.Fa, "h": SpecialCard.Hua, } suit_map = { "r": NumberCard.Suit.Red, "g": NumberCard.Suit.Green, "b": NumberCard.Suit.Black, } for square in squares: while True: cv2.imshow("Catalogue", cv2.resize(square, (500, 500))) cv2.waitKey(1) card_id = input("Card ID:").lower() card_type: Optional[Card] = None if len(card_id) == 1: if card_id not in special_card_map: continue card_type = special_card_map[card_id] elif len(card_id) == 2: if not card_id[0] in suit_map: continue if not card_id[1].isdigit(): continue if card_id[1] == "0": continue card_type = NumberCard( number=int(card_id[1]), suit=suit_map[card_id[0]] ) else: continue assert card_type is not None print(card_type) result.append((square, card_type)) break cv2.destroyWindow("Catalogue") assert result is not None return result