"""Functions to detect card value""" from typing import List, Tuple, Optional, Dict import enum import itertools import numpy as np # type: ignore import cv2 # type: ignore from .adjustment import Adjustment, get_square from ..board import Card, NumberCard, SpecialCard def _extract_squares(image: np.ndarray, squares: List[Tuple[int, int, int, int]]) -> List[np.ndarray]: return [image[square[1]:square[3], square[0]:square[2]].copy() for square in squares] def get_field_squares(image: np.ndarray, adjustment: Adjustment, count_x: int, count_y: int) -> List[np.ndarray]: """Return all squares in the field, according to the adjustment""" squares = [] for index_x, index_y in itertools.product(range(count_y), range(count_x)): squares.append(get_square(adjustment, index_x, index_y)) return _extract_squares(image, squares) class Cardcolor(enum.Enum): """Relevant colors for different types of cards""" Bai = (65, 65, 65) Black = (0, 0, 0) Red = (22, 48, 178) Green = (76, 111, 19) Background = (178, 194, 193) GREYSCALE_COLOR = { Cardcolor.Bai: 50, Cardcolor.Black: 100, Cardcolor.Red: 150, Cardcolor.Green: 200, Cardcolor.Background: 250} def simplify(image: np.ndarray) -> Tuple[np.ndarray, Dict[Cardcolor, int]]: """Reduce given image to the colors in Cardcolor""" result_image: np.ndarray = np.zeros( (image.shape[0], image.shape[1]), np.uint8) result_dict: Dict[Cardcolor, int] = {c: 0 for c in Cardcolor} for pixel_x, pixel_y in itertools.product( range(result_image.shape[0]), range(result_image.shape[1])): pixel = image[pixel_x, pixel_y] best_color: Optional[Tuple[Cardcolor, int]] = None for color in Cardcolor: mse = sum((x - y) ** 2 for x, y in zip(color.value, pixel)) if not best_color or best_color[1] > mse: best_color = (color, mse) assert best_color result_image[pixel_x, pixel_y] = GREYSCALE_COLOR[best_color[0]] result_dict[best_color[0]] += 1 return (result_image, result_dict) def _find_single_square(search_square: np.ndarray, template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]: assert search_square.shape[0] >= template_square.shape[0] assert search_square.shape[1] >= template_square.shape[1] best_result: Optional[Tuple[int, Tuple[int, int]]] = None for margin_x, margin_y in itertools.product( range(search_square.shape[0], template_square.shape[0] - 1, -1), range(search_square.shape[1], template_square.shape[1] - 1, -1)): search_region = search_square[margin_x - template_square.shape[0]:margin_x, margin_y - template_square.shape[1]:margin_y] count = cv2.countNonZero(search_region - template_square) if not best_result or count < best_result[0]: best_result = ( count, (margin_x - template_square.shape[0], margin_y - template_square.shape[1])) assert best_result return best_result def find_square(search_square: np.ndarray, squares: List[np.ndarray]) -> Tuple[np.ndarray, int]: """Compare all squares in squares with search_square, return best matching one. Requires all squares to be simplified.""" best_set = False best_square: Optional[np.ndarray] = None best_count = 0 for square in squares: count, _ = _find_single_square(search_square, square) if not best_set or count < best_count: best_set = True best_square = square best_count = count assert isinstance(best_square, np.ndarray) return (best_square, best_count) def catalogue_cards(squares: List[np.ndarray] ) -> List[Tuple[np.ndarray, Card]]: """Run manual cataloging for given squares""" cv2.namedWindow("Catalogue", cv2.WINDOW_NORMAL) cv2.waitKey(1) result: List[Tuple[np.ndarray, Card]] = [] print( "Card ID is [B]ai, [Z]hong, [F]a, [H]ua, [R]ed, [G]reen, [B]lack") print("Numbercard e.g. R3") special_card_map = { 'b': SpecialCard.Bai, 'z': SpecialCard.Zhong, 'f': SpecialCard.Fa, 'h': SpecialCard.Hua} suit_map = { 'r': NumberCard.Suit.Red, 'g': NumberCard.Suit.Green, 'b': NumberCard.Suit.Black} for square in squares: while True: cv2.imshow("Catalogue", cv2.resize(square, (500, 500))) cv2.waitKey(1) card_id = input("Card ID:").lower() card_type: Optional[Card] = None if len(card_id) == 1: if card_id not in special_card_map: continue card_type = special_card_map[card_id] elif len(card_id) == 2: if not card_id[0] in suit_map: continue if not card_id[1].isdigit(): continue if card_id[1] == '0': continue card_type = NumberCard(number=int( card_id[1]), suit=suit_map[card_id[0]]) else: continue assert card_type is not None print(card_type) result.append((square, card_type)) break cv2.destroyWindow("Catalogue") assert result is not None return result