Files
shenzhen-solitaire/tools/feature_extraction.py
2020-06-17 20:12:54 +02:00

119 lines
3.9 KiB
Python

import shenzhen_solitaire.card_detection.configuration as configuration
from shenzhen_solitaire.board import NumberCard, SpecialCard
import cv2
import numpy as np
from typing import Any, Tuple
def border_image(image, size=1, color=0):
for ring in range(size):
for x in range(ring, image.shape[0] - ring):
image[x][ring] = color
image[x][image.shape[1] - 1 - ring] = color
for y in range(ring, image.shape[1] - ring):
image[ring][y] = color
image[image.shape[0] - 1 - ring][y] = color
def prepare_image(image):
cnt = get_contour(image)
mask = np.zeros(image.shape[:2], dtype=image.dtype)
contim = cv2.drawContours(mask, [cnt], 0, 255, cv2.FILLED)
# crop = np.multiply(edge_image, contim)
return contim
def get_contour(image):
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ret, edge_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY_INV)
border_image(edge_image, size=0)
contours, hierarchy = cv2.findContours(
edge_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
cnt = max(contours, key=cv2.contourArea)
return cnt
def matchScaleInvShape(cont1, cont2):
m1 = cv2.moments(cont1)
m2 = cv2.moments(cont2)
moments = [
(m1[moment], m2[moment]) for moment in m1 if str(moment).startswith("nu")
]
return sum([abs((nu1) - (nu2)) for nu1, nu2 in moments])
def match_template(image, template):
image_cont, hierarchy = cv2.findContours(
image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
imcont = max(image_cont, key=cv2.contourArea)
template_cont, hierarchy = cv2.findContours(
template, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
)
temcont = max(template_cont, key=cv2.contourArea)
return [matchScaleInvShape(imcont, temcont)]
def type_fine(one, other) -> bool:
if isinstance(one, SpecialCard):
return one == other
assert isinstance(one, NumberCard)
if not isinstance(other, NumberCard):
return False
return one.number == other.number
def check_type(matches, should_type):
if not type_fine(matches[0][0], should_type):
correct_index = 0
for list_type, list_value, _ in matches:
if type_fine(list_type, should_type):
correct_value = list_value
break
correct_index += 1
print(
f"{str(should_type):>20} matched as {str(matches[0][0]):>20} {matches[0][1]:.05f}, "
f"correct in pos {correct_index:02d} val {correct_value:.05f}"
)
cv2.imshow("one", prepare_image(catalogue[matches[0][2]][0]))
cv2.imshow("two", img1)
cv2.imshow("three", prepare_image(catalogue[matches[correct_index][2]][0]))
cv2.waitKey(0)
return True
return False
def debug_match(image, image_type, catalogue):
cnt1 = prepare_image(image)
i1_matches = []
for index, (template_image, template_type) in enumerate(catalogue):
cnt2 = prepare_image(template_image)
i1_matches.append((template_type, matchScaleInvShape(cnt1, cnt2), index))
i1_matches = sorted(i1_matches, key=lambda x: x[1])
for list_type, list_value, list_index in i1_matches:
if not type_fine(list_type, i1_matches[0][0]):
if list_value * 0.4 < i1_matches[0][1]:
print(
f"{str(image_type):>20} {i1_matches[0][1]:.05f} very close"
f" match with {str(list_type):>20} {list_value:.05f}"
)
return
if i1_matches[0][1] > 1:
print(f"{image_type} with value {i1_matches[0][1]}")
def main() -> None:
pc = configuration.load("test_config.zip")
laptop = configuration.load("laptop_conf.zip")
bla = [(i, t) for i, t in pc.catalogue if t == SpecialCard.Hua]
bla = pc.catalogue
for pc_image, pc_card_type in bla:
debug_match(pc_image, pc_card_type, laptop.catalogue)
if __name__ == "__main__":
main()