238 lines
7.8 KiB
Python
238 lines
7.8 KiB
Python
"""Contains parse_board function"""
|
|
|
|
import copy
|
|
import itertools
|
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import json
|
|
|
|
from ..board import Board, Card, NumberCard, SpecialCard
|
|
from . import adjustment, card_finder
|
|
from .configuration import ButtonState, Configuration
|
|
|
|
|
|
def grouper(
|
|
iterable: Iterable[Any], groupsize: int, fillvalue: Any = None
|
|
) -> Iterable[Iterable[Any]]:
|
|
"Collect data into fixed-length chunks or blocks"
|
|
args = [iter(iterable)] * groupsize
|
|
return itertools.zip_longest(*args, fillvalue=fillvalue)
|
|
|
|
|
|
def fake_adjustment(adj: adjustment.Adjustment) -> adjustment.Adjustment:
|
|
result = copy.deepcopy(adj)
|
|
result.x -= 5
|
|
result.y -= 5
|
|
result.h += 10
|
|
result.w += 10
|
|
return result
|
|
|
|
|
|
def get_field_square_iterator(
|
|
image: np.ndarray, conf: Configuration, row_count: int, column_count: int
|
|
) -> Iterable[Tuple[np.ndarray, np.ndarray]]:
|
|
"""Return iterator for both the square, as well as the matching card border"""
|
|
my_adj = fake_adjustment(conf.field_adjustment)
|
|
my_border_adj = fake_adjustment(conf.border_adjustment)
|
|
squares = card_finder.get_field_squares(
|
|
image, my_adj, count_x=row_count, count_y=column_count
|
|
)
|
|
border_squares = card_finder.get_field_squares(
|
|
image, my_border_adj, count_x=row_count, count_y=column_count
|
|
)
|
|
grouped_squares = grouper(squares, row_count)
|
|
grouped_border_squares = grouper(border_squares, row_count)
|
|
return zip(grouped_squares, grouped_border_squares)
|
|
|
|
|
|
def match_template(template: np.ndarray, search_image: np.ndarray) -> float:
|
|
"""Return matchiness for the template on the search image"""
|
|
res = cv2.matchTemplate(search_image, template, cv2.TM_CCOEFF_NORMED)
|
|
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
|
|
assert isinstance(max_val, (int, float))
|
|
return float(max_val)
|
|
|
|
|
|
def parse_field_square(
|
|
square: np.ndarray, border: np.ndarray, conf: Configuration
|
|
) -> Tuple[Union[NumberCard, SpecialCard], bool]:
|
|
square_fits = [
|
|
(match_template(template, square), name) for template, name in conf.catalogue
|
|
]
|
|
best_val, best_name = max(square_fits, key=lambda x: x[0])
|
|
best_border = max(
|
|
match_template(template=template, search_image=border)
|
|
for template in conf.card_border
|
|
)
|
|
best_empty = max(
|
|
match_template(template=template, search_image=border)
|
|
for template in conf.empty_card
|
|
)
|
|
|
|
assert best_name is not None
|
|
assert best_empty is not None
|
|
assert best_border is not None
|
|
row_finished = best_empty > best_border
|
|
|
|
return (best_name, row_finished)
|
|
|
|
|
|
def parse_field(image: np.ndarray, conf: Configuration) -> List[List[Card]]:
|
|
"""Parse a screenshot of the game, using a given configuration"""
|
|
square_iterator = get_field_square_iterator(
|
|
image, conf, row_count=Board.MAX_ROW_SIZE, column_count=Board.MAX_COLUMN_SIZE
|
|
)
|
|
result = []
|
|
for square_group, border_group in square_iterator:
|
|
group_field = []
|
|
for index, (square, border_square) in enumerate(
|
|
zip(square_group, border_group)
|
|
):
|
|
value, row_finished = parse_field_square(square, border_square, conf)
|
|
group_field.append(value)
|
|
if row_finished:
|
|
break
|
|
|
|
result.append(group_field)
|
|
|
|
return result
|
|
|
|
|
|
def parse_hua(image: np.ndarray, conf: Configuration) -> bool:
|
|
"""Return true if hua is in the hua spot, false if hua spot is empty"""
|
|
my_hua_adj = fake_adjustment(conf.hua_adjustment)
|
|
hua_square = card_finder.get_field_squares(image, my_hua_adj, count_x=1, count_y=1)[
|
|
0
|
|
]
|
|
hua_templates = [
|
|
image for image, card_type in conf.catalogue if card_type == SpecialCard.Hua
|
|
]
|
|
best_hua = max(
|
|
match_template(template=template, search_image=hua_square)
|
|
for template in hua_templates
|
|
)
|
|
best_green = max(
|
|
match_template(template=template, search_image=hua_square)
|
|
for template in conf.green_card
|
|
)
|
|
return best_hua > best_green
|
|
|
|
|
|
def parse_bunker_field(
|
|
image: np.ndarray,
|
|
green_cards: List[np.ndarray],
|
|
card_backs: List[np.ndarray],
|
|
catalogue: List[Tuple[np.ndarray, Card]],
|
|
) -> Union[Tuple[SpecialCard, int], Optional[Card]]:
|
|
|
|
best_green = max(
|
|
match_template(template=template, search_image=image)
|
|
for template in green_cards
|
|
)
|
|
best_back = max(
|
|
match_template(template=template, search_image=image) for template in card_backs
|
|
)
|
|
|
|
best_card_value, best_card_name = max(
|
|
((match_template(template, image), name) for template, name in catalogue),
|
|
key=lambda x: x[0],
|
|
)
|
|
|
|
return max(
|
|
[
|
|
(best_green, None),
|
|
(best_back, (SpecialCard.Hua, 0)),
|
|
(best_card_value, best_card_name),
|
|
],
|
|
key=lambda x: x[0],
|
|
)[1]
|
|
|
|
|
|
def parse_special_button(
|
|
image: np.ndarray,
|
|
position: SpecialCard,
|
|
buttons: List[Tuple[ButtonState, SpecialCard, np.ndarray]],
|
|
) -> ButtonState:
|
|
"""Return true if special button is greyed out, e.g. this dragon card is removed from the field"""
|
|
square_fits = [
|
|
(match_template(template, image), state, name)
|
|
for state, name, template in buttons
|
|
]
|
|
best_state, best_name = max(square_fits, key=lambda x: x[0])[1:]
|
|
assert best_name == position
|
|
return best_state
|
|
|
|
|
|
def parse_bunker(
|
|
image: np.ndarray, conf: Configuration
|
|
) -> List[Union[Tuple[SpecialCard, int], Optional[Card]]]:
|
|
bunker_squares = card_finder.get_field_squares(
|
|
image, fake_adjustment(conf.bunker_adjustment), count_x=1, count_y=3
|
|
)
|
|
button_squares = card_finder.get_field_squares(
|
|
image, fake_adjustment(conf.special_button_adjustment), count_x=3, count_y=1
|
|
)
|
|
dragon_sequence = [SpecialCard.Zhong, SpecialCard.Fa, SpecialCard.Bai]
|
|
dragons = [
|
|
card_type
|
|
for dragon_image, card_type in zip(button_squares, dragon_sequence)
|
|
if parse_special_button(dragon_image, card_type, conf.special_buttons)
|
|
== ButtonState.greyed
|
|
]
|
|
dragon_iter = iter(dragons)
|
|
matches = [
|
|
parse_bunker_field(square, conf.green_card, conf.card_back, conf.catalogue)
|
|
for square in bunker_squares
|
|
]
|
|
matches = [(next(dragon_iter), 0) if isinstance(x, tuple) else x for x in matches]
|
|
assert next(dragon_iter, None) is None
|
|
return matches
|
|
|
|
|
|
def parse_goal_field(
|
|
image: np.ndarray,
|
|
catalogue: List[Tuple[np.ndarray, Card]],
|
|
green_cards: List[np.ndarray],
|
|
) -> Optional[NumberCard]:
|
|
square_fits = [
|
|
(match_template(template, image), name) for template, name in catalogue
|
|
]
|
|
best_card_value, best_card_name = max(square_fits, key=lambda x: x[0])
|
|
|
|
best_green_value = max(match_template(template, image) for template in green_cards)
|
|
if best_green_value > best_card_value:
|
|
return None
|
|
|
|
assert isinstance(best_card_name, NumberCard)
|
|
return best_card_name
|
|
|
|
|
|
def parse_goal(image: np.ndarray, conf: Configuration) -> List[Optional[NumberCard]]:
|
|
goal_squares = card_finder.get_field_squares(
|
|
image, fake_adjustment(conf.goal_adjustment), count_x=1, count_y=3
|
|
)
|
|
goal_list = [
|
|
parse_goal_field(square, conf.catalogue, conf.green_card)
|
|
for square in goal_squares
|
|
]
|
|
|
|
return goal_list
|
|
|
|
|
|
def parse_board(image: np.ndarray, conf: Configuration) -> Board:
|
|
result = Board()
|
|
result.field = parse_field(image, conf)
|
|
result.flower_gone = parse_hua(image, conf)
|
|
result.bunker = parse_bunker(image, conf)
|
|
result.goal = parse_goal(image, conf)
|
|
return result
|
|
|
|
def parse_start_board(image: np.ndarray, conf: Configuration) -> Board:
|
|
result = Board()
|
|
result.field = parse_field(image, conf)
|
|
result.flower_gone = parse_hua(image, conf)
|
|
result.bunker = [None] * 3
|
|
result.goal = parse_goal(image, conf)
|
|
return result |