Files
shenzhen-solitaire/shenzhen_solitaire/card_detection/board_parser.py
Lukas Wölfer d752ffb24c Made it work
2020-02-12 00:50:31 +01:00

233 lines
7.5 KiB
Python

"""Contains parse_board function"""
import copy
import itertools
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
import cv2
import numpy as np
from ..board import Board, Card, NumberCard, SpecialCard
from . import adjustment, card_finder
from .configuration import Configuration, ButtonState
def grouper(
iterable: Iterable[Any], groupsize: int, fillvalue: Any = None
) -> Iterable[Iterable[Any]]:
"Collect data into fixed-length chunks or blocks"
args = [iter(iterable)] * groupsize
return itertools.zip_longest(*args, fillvalue=fillvalue)
def fake_adjustment(adj: adjustment.Adjustment) -> adjustment.Adjustment:
result = copy.deepcopy(adj)
result.x -= 5
result.y -= 5
result.h += 10
result.w += 10
return result
def get_field_square_iterator(
image: np.ndarray, conf: Configuration, row_count: int, column_count: int
) -> Iterable[Tuple[np.ndarray, np.ndarray]]:
"""Return iterator for both the square, as well as the matching card border"""
my_adj = fake_adjustment(conf.field_adjustment)
my_border_adj = fake_adjustment(conf.border_adjustment)
squares = card_finder.get_field_squares(
image, my_adj, count_x=row_count, count_y=column_count
)
border_squares = card_finder.get_field_squares(
image, my_border_adj, count_x=row_count, count_y=column_count
)
grouped_squares = grouper(squares, row_count)
grouped_border_squares = grouper(border_squares, row_count)
return zip(grouped_squares, grouped_border_squares)
def match_template(template: np.ndarray, search_image: np.ndarray) -> float:
"""Return matchiness for the template on the search image"""
res = cv2.matchTemplate(search_image, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
assert isinstance(max_val, (int, float))
return float(max_val)
def parse_field_square(
square: np.ndarray, border: np.ndarray, conf: Configuration
) -> Tuple[Union[NumberCard, SpecialCard], bool]:
square_fits = [
(match_template(template, square), name) for template, name in conf.catalogue
]
best_val, best_name = max(square_fits, key=lambda x: x[0])
best_border = max(
match_template(template=template, search_image=border)
for template in conf.card_border
)
best_empty = max(
match_template(template=template, search_image=border)
for template in conf.empty_card
)
assert best_name is not None
assert best_empty is not None
assert best_border is not None
row_finished = best_empty > best_border
return (best_name, row_finished)
def parse_field(image: np.ndarray, conf: Configuration) -> List[List[Card]]:
"""Parse a screenshot of the game, using a given configuration"""
square_iterator = get_field_square_iterator(
image, conf, row_count=Board.MAX_ROW_SIZE, column_count=Board.MAX_COLUMN_SIZE
)
result = []
for square_group, border_group in square_iterator:
group_field = []
for index, (square, border_square) in enumerate(
zip(square_group, border_group)
):
value, row_finished = parse_field_square(square, border_square, conf)
group_field.append(value)
if row_finished:
break
result.append(group_field)
return result
def parse_hua(image: np.ndarray, conf: Configuration) -> bool:
"""Return true if hua is in the hua spot, false if hua spot is empty"""
my_hua_adj = fake_adjustment(conf.hua_adjustment)
hua_square = card_finder.get_field_squares(image, my_hua_adj, count_x=1, count_y=1)[
0
]
hua_templates = [
image for image, card_type in conf.catalogue if card_type == SpecialCard.Hua
]
best_hua = max(
match_template(template=template, search_image=hua_square)
for template in hua_templates
)
best_green = max(
match_template(template=template, search_image=hua_square)
for template in conf.green_card
)
return best_hua > best_green
def parse_bunker_field(
image: np.ndarray,
green_cards: List[np.ndarray],
card_backs: List[np.ndarray],
catalogue: List[Tuple[np.ndarray, Card]],
) -> Union[Tuple[SpecialCard, int], Optional[Card]]:
best_green = max(
match_template(template=template, search_image=image)
for template in green_cards
)
best_back = max(
match_template(template=template, search_image=image) for template in card_backs
)
best_card_value, best_card_name = max(
((match_template(template, image), name) for template, name in catalogue),
key=lambda x: x[0],
)
return max(
[
(best_green, None),
(best_back, (SpecialCard.Hua, 0)),
(best_card_value, best_card_name),
],
key=lambda x: x[0],
)[1]
def parse_special_button(
image: np.ndarray,
position: SpecialCard,
buttons: List[Tuple[ButtonState, SpecialCard, np.ndarray]],
) -> ButtonState:
"""Return true if special button is greyed out, e.g. this dragon card is removed from the field"""
square_fits = [
(match_template(template, image), state, name)
for state, name, template in buttons
]
best_state, best_name = max(square_fits, key=lambda x: x[0])[1:]
assert best_name == position
return best_state
def parse_bunker(
image: np.ndarray, conf: Configuration
) -> List[Union[Tuple[SpecialCard, int], Optional[Card]]]:
bunker_squares = card_finder.get_field_squares(
image, fake_adjustment(conf.bunker_adjustment), count_x=1, count_y=3
)
button_squares = card_finder.get_field_squares(
image, fake_adjustment(conf.special_button_adjustment), count_x=3, count_y=1
)
dragon_sequence = [SpecialCard.Zhong, SpecialCard.Fa, SpecialCard.Bai]
dragons = [
card_type
for dragon_image, card_type in zip(button_squares, dragon_sequence)
if parse_special_button(dragon_image, card_type, conf.special_buttons)
== ButtonState.greyed
]
dragon_iter = iter(dragons)
matches = [
parse_bunker_field(square, conf.green_card, conf.card_back, conf.catalogue)
for square in bunker_squares
]
matches = [(next(dragon_iter), 0) if isinstance(x, tuple) else x for x in matches]
assert next(dragon_iter, None) is None
return matches
def parse_goal_field(
image: np.ndarray,
catalogue: List[Tuple[np.ndarray, Card]],
green_cards: List[np.ndarray],
) -> Optional[NumberCard]:
square_fits = [
(match_template(template, image), name) for template, name in catalogue
]
best_card_value, best_card_name = max(square_fits, key=lambda x: x[0])
best_green_value = max(match_template(template, image) for template in green_cards)
if best_green_value > best_card_value:
return None
assert isinstance(best_card_name, NumberCard)
return best_card_name
def parse_goal(image: np.ndarray, conf: Configuration) -> List[Optional[NumberCard]]:
goal_squares = card_finder.get_field_squares(
image, fake_adjustment(conf.goal_adjustment), count_x=1, count_y=3
)
goal_list = [
parse_goal_field(square, conf.catalogue, conf.green_card)
for square in goal_squares
]
return goal_list
def parse_board(image: np.ndarray, conf: Configuration) -> Board:
result = Board()
result.field = parse_field(image, conf)
result.flower_gone = parse_hua(image, conf)
result.bunker = parse_bunker(image, conf)
result.goal = parse_goal(image, conf)
return result