100 lines
3.4 KiB
Python
100 lines
3.4 KiB
Python
import shenzhen_solitaire.card_detection.configuration as configuration
|
|
from shenzhen_solitaire.board import NumberCard, SpecialCard
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
from typing import Any, Tuple
|
|
|
|
|
|
def prepare_image(image):
|
|
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
# edge_image = cv2.Canny(gray_image, 120, 160)
|
|
ret, edge_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY_INV)
|
|
contours2, hierarchy = cv2.findContours(
|
|
edge_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
cnt2 = max(contours2, key=cv2.contourArea)
|
|
|
|
mask = np.zeros(edge_image.shape, dtype=edge_image.dtype)
|
|
contim = cv2.drawContours(mask, [cnt2], 0, 1, cv2.FILLED)
|
|
crop = np.multiply(edge_image, contim)
|
|
return crop
|
|
|
|
|
|
def match_template(image, template):
|
|
image_cont, hierarchy = cv2.findContours(
|
|
image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
imcont = max(image_cont, key=cv2.contourArea)
|
|
template_cont, hierarchy = cv2.findContours(
|
|
template, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
temcont = max(template_cont, key=cv2.contourArea)
|
|
return [
|
|
cv2.matchShapes(imcont, temcont, mode, 0.0)
|
|
for mode in (
|
|
cv2.CONTOURS_MATCH_I1,
|
|
cv2.CONTOURS_MATCH_I2,
|
|
cv2.CONTOURS_MATCH_I3,
|
|
)
|
|
]
|
|
|
|
|
|
def type_fine(one, other) -> bool:
|
|
if isinstance(one, SpecialCard):
|
|
return one == other
|
|
assert isinstance(one, NumberCard)
|
|
if not isinstance(other, NumberCard):
|
|
return False
|
|
return one.number == other.number
|
|
|
|
|
|
def debug_match(image, image_type, catalogue):
|
|
img1 = prepare_image(image)
|
|
i1_matches = []
|
|
for index, (template_image, template_type) in enumerate(catalogue):
|
|
img2 = prepare_image(template_image)
|
|
i1_matches.append((template_type, match_template(img1, img2)[0], index))
|
|
i1_matches = sorted(i1_matches, key=lambda x: x[1])
|
|
if not type_fine(i1_matches[0][0], image_type):
|
|
correct_index = 0
|
|
for list_type, list_value, _ in i1_matches:
|
|
if type_fine(list_type, image_type):
|
|
correct_value = list_value
|
|
break
|
|
correct_index += 1
|
|
print(
|
|
f"{str(image_type):>20} matched as {str(i1_matches[0][0]):>20} {i1_matches[0][1]:.05f}, "
|
|
f"correct in pos {correct_index:02d} val {correct_value:.05f}"
|
|
)
|
|
cv2.imshow("one", prepare_image(catalogue[i1_matches[0][2]][0]))
|
|
cv2.imshow("two", img1)
|
|
cv2.imshow("three", prepare_image(catalogue[i1_matches[correct_index][2]][0]))
|
|
cv2.waitKey(0)
|
|
return
|
|
for list_type, list_value, list_index in i1_matches:
|
|
if not type_fine(list_type, i1_matches[0][0]):
|
|
if list_value * 0.6 < i1_matches[0][1]:
|
|
print(
|
|
f"{str(image_type):>20} {i1_matches[0][1]:.05f} very close"
|
|
f" match with {str(list_type):>20} {list_value:.05f}"
|
|
)
|
|
return
|
|
|
|
if i1_matches[0][1] > 1:
|
|
print(f"{image_type} with value {i1_matches[0][1]}")
|
|
|
|
|
|
def main() -> None:
|
|
pc = configuration.load("test_config.zip")
|
|
laptop = configuration.load("laptop_conf.zip")
|
|
bla = [(i, t) for i, t in pc.catalogue if t == SpecialCard.Hua]
|
|
bla = pc.catalogue
|
|
for pc_image, pc_card_type in bla:
|
|
debug_match(pc_image, pc_card_type, laptop.catalogue)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|