Worked on feature extraction
This commit is contained in:
@@ -7,19 +7,42 @@ import numpy as np
|
||||
from typing import Any, Tuple
|
||||
|
||||
|
||||
def border_image(image, size=1, color=0):
|
||||
for ring in range(size):
|
||||
for x in range(ring, image.shape[0] - ring):
|
||||
image[x][ring] = color
|
||||
image[x][image.shape[1] - 1 - ring] = color
|
||||
for y in range(ring, image.shape[1] - ring):
|
||||
image[ring][y] = color
|
||||
image[image.shape[0] - 1 - ring][y] = color
|
||||
|
||||
|
||||
def prepare_image(image):
|
||||
cnt = get_contour(image)
|
||||
mask = np.zeros(image.shape[:2], dtype=image.dtype)
|
||||
contim = cv2.drawContours(mask, [cnt], 0, 255, cv2.FILLED)
|
||||
# crop = np.multiply(edge_image, contim)
|
||||
return contim
|
||||
|
||||
|
||||
def get_contour(image):
|
||||
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
# edge_image = cv2.Canny(gray_image, 120, 160)
|
||||
ret, edge_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY_INV)
|
||||
contours2, hierarchy = cv2.findContours(
|
||||
border_image(edge_image, size=0)
|
||||
contours, hierarchy = cv2.findContours(
|
||||
edge_image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
cnt2 = max(contours2, key=cv2.contourArea)
|
||||
cnt = max(contours, key=cv2.contourArea)
|
||||
return cnt
|
||||
|
||||
mask = np.zeros(edge_image.shape, dtype=edge_image.dtype)
|
||||
contim = cv2.drawContours(mask, [cnt2], 0, 1, cv2.FILLED)
|
||||
crop = np.multiply(edge_image, contim)
|
||||
return crop
|
||||
|
||||
def matchScaleInvShape(cont1, cont2):
|
||||
m1 = cv2.moments(cont1)
|
||||
m2 = cv2.moments(cont2)
|
||||
moments = [
|
||||
(m1[moment], m2[moment]) for moment in m1 if str(moment).startswith("nu")
|
||||
]
|
||||
return sum([abs((nu1) - (nu2)) for nu1, nu2 in moments])
|
||||
|
||||
|
||||
def match_template(image, template):
|
||||
@@ -31,14 +54,7 @@ def match_template(image, template):
|
||||
template, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
temcont = max(template_cont, key=cv2.contourArea)
|
||||
return [
|
||||
cv2.matchShapes(imcont, temcont, mode, 0.0)
|
||||
for mode in (
|
||||
cv2.CONTOURS_MATCH_I1,
|
||||
cv2.CONTOURS_MATCH_I2,
|
||||
cv2.CONTOURS_MATCH_I3,
|
||||
)
|
||||
]
|
||||
return [matchScaleInvShape(imcont, temcont)]
|
||||
|
||||
|
||||
def type_fine(one, other) -> bool:
|
||||
@@ -49,33 +65,36 @@ def type_fine(one, other) -> bool:
|
||||
return False
|
||||
return one.number == other.number
|
||||
|
||||
|
||||
def debug_match(image, image_type, catalogue):
|
||||
img1 = prepare_image(image)
|
||||
i1_matches = []
|
||||
for index, (template_image, template_type) in enumerate(catalogue):
|
||||
img2 = prepare_image(template_image)
|
||||
i1_matches.append((template_type, match_template(img1, img2)[0], index))
|
||||
i1_matches = sorted(i1_matches, key=lambda x: x[1])
|
||||
if not type_fine(i1_matches[0][0], image_type):
|
||||
def check_type(matches, should_type):
|
||||
if not type_fine(matches[0][0], should_type):
|
||||
correct_index = 0
|
||||
for list_type, list_value, _ in i1_matches:
|
||||
if type_fine(list_type, image_type):
|
||||
for list_type, list_value, _ in matches:
|
||||
if type_fine(list_type, should_type):
|
||||
correct_value = list_value
|
||||
break
|
||||
correct_index += 1
|
||||
print(
|
||||
f"{str(image_type):>20} matched as {str(i1_matches[0][0]):>20} {i1_matches[0][1]:.05f}, "
|
||||
f"{str(should_type):>20} matched as {str(matches[0][0]):>20} {matches[0][1]:.05f}, "
|
||||
f"correct in pos {correct_index:02d} val {correct_value:.05f}"
|
||||
)
|
||||
cv2.imshow("one", prepare_image(catalogue[i1_matches[0][2]][0]))
|
||||
cv2.imshow("one", prepare_image(catalogue[matches[0][2]][0]))
|
||||
cv2.imshow("two", img1)
|
||||
cv2.imshow("three", prepare_image(catalogue[i1_matches[correct_index][2]][0]))
|
||||
cv2.imshow("three", prepare_image(catalogue[matches[correct_index][2]][0]))
|
||||
cv2.waitKey(0)
|
||||
return
|
||||
return True
|
||||
return False
|
||||
|
||||
def debug_match(image, image_type, catalogue):
|
||||
cnt1 = prepare_image(image)
|
||||
i1_matches = []
|
||||
for index, (template_image, template_type) in enumerate(catalogue):
|
||||
cnt2 = prepare_image(template_image)
|
||||
i1_matches.append((template_type, matchScaleInvShape(cnt1, cnt2), index))
|
||||
i1_matches = sorted(i1_matches, key=lambda x: x[1])
|
||||
|
||||
for list_type, list_value, list_index in i1_matches:
|
||||
if not type_fine(list_type, i1_matches[0][0]):
|
||||
if list_value * 0.6 < i1_matches[0][1]:
|
||||
if list_value * 0.4 < i1_matches[0][1]:
|
||||
print(
|
||||
f"{str(image_type):>20} {i1_matches[0][1]:.05f} very close"
|
||||
f" match with {str(list_type):>20} {list_value:.05f}"
|
||||
|
||||
Reference in New Issue
Block a user