Worked on cv
This commit is contained in:
BIN
Solitaire2.png
Normal file
BIN
Solitaire2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 1.0 MiB |
@@ -1,7 +1,9 @@
|
||||
from typing import List, Tuple
|
||||
from typing import List, Tuple, Optional, Dict
|
||||
import numpy
|
||||
from .adjustment import Adjustment, get_square
|
||||
from .. import board
|
||||
import enum
|
||||
import itertools
|
||||
|
||||
|
||||
def _extract_squares(image: numpy.ndarray,
|
||||
@@ -20,3 +22,26 @@ def get_field_squares(image: numpy.ndarray,
|
||||
for iy in range(5):
|
||||
squares.append(get_square(adjustment, ix, iy))
|
||||
return _extract_squares(image, squares)
|
||||
|
||||
|
||||
class Cardcolor(enum.Enum):
|
||||
Bai = (65, 65, 65)
|
||||
Black = (0, 0, 0)
|
||||
Red = (22, 48, 178)
|
||||
Green = (76, 111, 19)
|
||||
Background = (178, 194, 193)
|
||||
|
||||
|
||||
def simplify(image: numpy.ndarray) -> Dict[Cardcolor, int]:
|
||||
result_dict: Dict[Cardcolor, int] = {c: 0 for c in Cardcolor}
|
||||
for pixel in itertools.chain.from_iterable(image):
|
||||
best_color: Optional[Tuple[Cardcolor, int]] = None
|
||||
for color in Cardcolor:
|
||||
mse = sum((x - y) ** 2 for x, y in zip(color.value, pixel))
|
||||
if not best_color or best_color[1] > mse:
|
||||
best_color = (color, mse)
|
||||
assert best_color
|
||||
for i in range(3):
|
||||
pixel[i] = best_color[0].value[i]
|
||||
result_dict[best_color[0]] += 1
|
||||
return result_dict
|
||||
|
||||
@@ -1,42 +1,45 @@
|
||||
from .context import shenzhen_solitaire
|
||||
from shenzhen_solitaire.cv import adjustment
|
||||
from shenzhen_solitaire.cv import card_finder
|
||||
from typing import Tuple, List, Dict
|
||||
import cv2
|
||||
import numpy
|
||||
import itertools
|
||||
|
||||
A = cv2.imread("Solitaire.png")
|
||||
|
||||
adj = adjustment.adjust_field(A)
|
||||
X = card_finder.get_field_squares(A, adj)
|
||||
for h in range(20):
|
||||
p = {None: 0}
|
||||
for x in X[h]:
|
||||
for x2 in ((x1[0], x1[1], x1[2]) for x1 in x):
|
||||
if x2 in p:
|
||||
p[x2] += 1
|
||||
else:
|
||||
p[x2] = 1
|
||||
B = sorted(p.items(), key=lambda x: x[1])
|
||||
print(*B, sep='\n')
|
||||
|
||||
T = X[h].copy()
|
||||
cv2.imshow("Window", T)
|
||||
while cv2.waitKey(0) != 27:
|
||||
pass
|
||||
cv2.destroyWindow("Window")
|
||||
assert 0
|
||||
|
||||
for ix, vx in enumerate(T):
|
||||
for iy, vy in enumerate(vx):
|
||||
if (vy[0] > 100) and (vy[1] > 100) and (vy[2] > 100):
|
||||
T[ix, iy] = [255, 255, 255]
|
||||
def pixelcount(image: numpy.ndarray) -> List[Tuple[Tuple[int, int, int], int]]:
|
||||
p: Dict[Tuple[int, int, int], int] = {(0, 0, 0): 0}
|
||||
for pixel in itertools.chain.from_iterable(image):
|
||||
x = tuple(pixel)
|
||||
if x in p:
|
||||
p[x] += 1
|
||||
else:
|
||||
T[ix, iy] = [0, 0, 0]
|
||||
p[x] = 1
|
||||
B = sorted(p.items(), key=lambda x: x[1])
|
||||
return B
|
||||
|
||||
cv2.imshow("Window", T)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("Window")
|
||||
def simplify(image: numpy.ndarray) -> None:
|
||||
cv2.imshow("Window", image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("Window")
|
||||
print(*card_finder.simplify(image).items(), sep='\n')
|
||||
cv2.imshow("Window", image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("Window")
|
||||
|
||||
|
||||
# for j in X:
|
||||
# cv2.imshow("Window", j)
|
||||
# cv2.waitKey(0)
|
||||
def main() -> None:
|
||||
adj = adjustment.adjust_field(A)
|
||||
image_squares = card_finder.get_field_squares(A, adj)
|
||||
for img in image_squares:
|
||||
print(*pixelcount(img), sep='\n')
|
||||
cv2.imshow("Window", img)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyWindow("Window")
|
||||
print()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
Reference in New Issue
Block a user