Worked on card value detection

This commit is contained in:
Lukas Wölfer
2019-04-22 19:17:40 +02:00
parent 3077525efe
commit 67f55a3e88
2 changed files with 93 additions and 22 deletions

View File

@@ -1,22 +1,22 @@
from typing import List, Tuple, Optional, Dict
import numpy
from .adjustment import Adjustment, get_square
from .. import board
import enum
import itertools
import cv2
import numpy as np
from .adjustment import Adjustment, get_square
def _extract_squares(image: numpy.ndarray,
def _extract_squares(image: np.ndarray,
squares: List[Tuple[int,
int,
int,
int]]) -> List[numpy.ndarray]:
int]]) -> List[np.ndarray]:
return [image[square[1]:square[3], square[0]:square[2]].copy()
for square in squares]
def get_field_squares(image: numpy.ndarray,
adjustment: Adjustment) -> List[numpy.ndarray]:
def get_field_squares(image: np.ndarray,
adjustment: Adjustment) -> List[np.ndarray]:
squares = []
for ix in range(8):
for iy in range(5):
@@ -32,16 +32,79 @@ class Cardcolor(enum.Enum):
Background = (178, 194, 193)
def simplify(image: numpy.ndarray) -> Dict[Cardcolor, int]:
GREYSCALE_COLOR = {
Cardcolor.Bai: 50,
Cardcolor.Black: 100,
Cardcolor.Red: 150,
Cardcolor.Green: 200,
Cardcolor.Background: 250}
def simplify(image: np.ndarray) -> Tuple[np.ndarray, Dict[Cardcolor, int]]:
result_image: np.ndarray = np.zeros(
(image.shape[0], image.shape[1]), np.uint8)
result_dict: Dict[Cardcolor, int] = {c: 0 for c in Cardcolor}
for pixel in itertools.chain.from_iterable(image):
for pixel_x, pixel_y in itertools.product(
range(result_image.shape[0]),
range(result_image.shape[1])):
pixel = image[pixel_x, pixel_y]
best_color: Optional[Tuple[Cardcolor, int]] = None
for color in Cardcolor:
mse = sum((x - y) ** 2 for x, y in zip(color.value, pixel))
if not best_color or best_color[1] > mse:
best_color = (color, mse)
assert best_color
for i in range(3):
pixel[i] = best_color[0].value[i]
result_image[pixel_x, pixel_y] = GREYSCALE_COLOR[best_color[0]]
result_dict[best_color[0]] += 1
return result_dict
return (result_image, result_dict)
def get_simplified_squares(image: np.ndarray,
adjustment: Adjustment) -> List[np.ndarray]:
squares = get_field_squares(image, adjustment)
for index, square in enumerate(squares):
squares[index], _ = simplify(square)
return squares
def _find_single_square(search_square: np.ndarray,
template_square: np.ndarray) -> Tuple[int, Tuple[int, int]]:
assert search_square.shape[0] <= template_square.shape[0]
assert search_square.shape[1] <= template_square.shape[1]
best_result: Optional[Tuple[int, Tuple[int, int]]] = None
for x, y in itertools.product(
range(template_square.shape[0], search_square.shape[0] - 1, -1),
range(template_square.shape[1], search_square.shape[1] - 1, -1)):
p = template_square[x - search_square.shape[0]:x,
y - search_square.shape[1]:y] - search_square
count = cv2.countNonZero(p)
if not best_result or count < best_result[0]:
best_result = (
count,
(x - search_square.shape[0],
y - search_square.shape[1]))
return best_result
def find_square(search_square: np.ndarray,
squares: List[np.ndarray]) -> Tuple[np.ndarray, int]:
best_set = False
best_square = None
best_count = 0
best_coord = None
for square in squares:
count, coord = _find_single_square(square, search_square)
if not best_set or count < best_count:
best_set = True
best_square = square
best_count = count
best_coord = coord
print(best_square[1])
cv2.imshow("Window", best_square -
search_square[best_coord[0]:best_coord[0] +
best_square.shape[0], best_coord[1]:best_coord[1] +
best_square.shape[1]])
while cv2.waitKey(0) != 27:
pass
cv2.destroyWindow("Window")
return (best_square, best_count)